20. コンクリート中の塩化物総量規制及びアルカリ骨材反応抑制対策実施要領

平成元年9月13日 建 近 技 第332号

コンクリート中の塩化物総量規制及びアルカリ骨材反応抑制対策実施要領

目 次

1	コンクリート中の塩化物総量規制及びアルカリ骨材反応抑制対	策実施要領
	I コンクリート中の塩化物総量規制	20 - 5
	アルカリ骨材反応抑制対策	20 - 7
	アルカリ骨材反応抑制対策(土木構造物)実施要領	20 - 9
2	骨材のアルカリシリカ反応性試験(モルタルバー法)国土交通省沿	去 20 – 11
3	骨材のアルカリシリカ反応性試験(化学法)国土交通省法	······ 20 – 17

1 コンクリート中の塩化物総量規制及びアルカリ骨 材反応抑制対策実施要領

この要領は、土木構造物の耐久性を向上するために、工事施工時におけるコンクリート中の塩化物総量規制及びアルカリ骨材反応抑制対策を現場において行う場合に必要な事項を定めるものである。

I コンクリート中の塩化物総量規制

1 適用範囲

土木構造物に使用されるコンクリート及びグラウト剤を対象とする。

- (1) 生コンクリート
 - 鉄筋コンクリート構造物を対象とする。

ただし、下記の構造物は対象としない。

- ①小型構造物(I)・(I)) (鉄筋コンクリートとして設計されたも
- ②消波・根固めブロック のは除く。)
- (2) コンクリート製品

下記に示す製品とする。

コンクリート製品①

鉄筋コンクリート管

遠心力鉄筋コンクリート管

鉄筋コンクリート組立十止

遠心力プレストレストコンクリートポール

鉄筋コンクリートフリューム

鉄筋コンクリートケーブルトラフ

加圧コンクリート矢板

鉄筋コンクリートU形用ふた

鉄筋コンクリートボックスカルバート

PCボックスカルバート

鉄筋コンクリートセグメント

鉄筋コンクリートU形

鉄筋コンクリートL形

遠心力鉄筋コンクリートくい

ポストテンション方式遠心力プレストレストコンクリートくい

道路用鉄筋コンクリート側溝ふた 鉄筋コンクリートベンチフリューム 鉄筋コンクリート矢板 ロール転圧鉄筋コンクリート管 鉄筋コンクリートL型擁壁 道路用鉄筋コンクリート側溝

コンクリート製品②

スラブ橋用プレストレストコンクリート橋げた 軽荷重スラブ橋用プレストレストコンクリート橋げた けた橋用プレストレストコンクリート橋げた プレストレストコンクリート矢板 プレテンション方式遠心力プレストレストコンクリートくい プレテンション方式遠心力高強度プレストレストコンクリートくい コアー式プレストレストコンクリート管 ※「①・②とは2の(1)・(2)による。]

2 規制値

- (1) 鉄筋コンクリート部材、ポストテンション方式のプレストレストコンクリート部材(シース内のグラウトを除く。)及び用心鉄筋を有する無筋コンクリート部材における許容塩化物総量は、 $0.60 {\rm kg/m}^3$ (Cl^- 重量)とする。
- (2) プレテンション方式のプレストレストコンクリート部材、シース内の グラウト及びオートクレープ養生を行う製品における許容塩化物総量は 0.30kg/m³(Cl⁻重量)とする。
- (3) アルミナセメントを用いる場合又は電食のおそれのある場合等は、試験 結果等から適宜定めるものとし、特に資料が無い場合は0.30kg/m³(Cl⁻重量)とする。

3 生コンクリートの測定及び判定

(1) コンクリート中の塩化物量の測定及び判定は、原則としてコンクリート 打設場所で請負者の責任において実施する。

ただし、工場で実施する場合の測定は製造業者が行い、請負者が立会い 判定する。

- (2) コンクリート中の塩化物量は、(財国土開発技術センターの評価を受けた 測定器により測定するものとする。
- (3) 測定方法は、使用する測定器の仕様によるものとする。
- (4) 測定は、コンクリートの打設が午前と午後にまたがる場合は、一日につき二回以上(午前、午後)、コンクリート打設前に行うものとする。

ただし、打設量が少量で、半日で打設が完了するような場合には、1回でもよい。

また、コンクリートの種類(材料及び配合等)や工場が変わる場合については、その都度、一回以上の測定を行うものとする。

(5) 測定結果の判定は、測定ごとに行うものとし、それぞれの測定における 3回の平均値が、2に示している塩化物総量以下であることをもって合格 とする。

なお、測定の結果不合格になった場合は、その運搬車のコンクリートの 受取りを拒否するとともに次の運搬車から、毎回測定を行い、それぞれの 結果が規制値を下回ることを確認した後、そのコンクリートを用いるもの とする。

ただし、この場合塩化物総量が安定して規制値を下回ることが確認できれば、その後の測定は通常の頻度で行ってもよいものとする。

4 コンクリート製品の測定及び判定

- (1) 請負者は、製造業者に工場での管理データや製造時の塩化物の測定結果を提出させるものとする。
- (2) 測定は、打ち込み前のフレッシュコンクリートについて行う。
- (3) 測定は、3の(2)・(3)に準じて行う。
- (4) 頻度は、1回/ロット以上、強度等の管理と同様とする。
- (5) 製品受け入れの判定は、(1)の資料により行う。

5 監督

監督職員(現場技術員を含む。)は、適宜測定に立会うものとし、その他については請負者より提出させた測定記録により審査する。

アルカリ骨材反応抑制対策

1. 適用範囲

国土交通省が建設する構造物に使用されるコンクリートおよびコンクリート 工場製品に適用する。ただし、仮設構造物のように長期の耐久性を期待しなく ともよいものは除く。

2. 抑制対策

構造物に使用するコンクリートは、アルカリ骨材反応を抑制するため、次の3つの対策の中のいずれか1つについて確認をとらなければならない。なお、土木構造物については2.1、2.2を優先する。

2.1 コンクリート中のアルカリ総量の抑制

アルカリ量が表示されたポルトランドセメント等を使用し、コンクリート1 m³に含まれるアルカリ総量をNa₂O換算で3.0kg以下にする。

2.2 抑制効果のある混合セメント等の使用

JIS R 5211高炉セメントに適合する高炉セメント [B種またはC種] あるいはJIS R 5213フライアッシュセメントに適合するフライアッシュセメント [B種またはC種]、もしくは混和材をポルトランドセメントに混入した結合材でアルカリ骨材反応抑制効果の確認されたものを使用する。

2.3 安全と認められる骨材の使用

骨材のアルカリシリカ反応性試験(化学法またはモルタルバー法)^{注)}の結果で無害と確認された骨材を使用する。

なお、海水または潮風の影響を受ける地域において、アルカリ骨材反応による損傷が構造物の安全性に重大な影響を及ぼすと考えられる場合(2.3の対策をとったものは除く)には、塩分の浸透を防止するための塗装等の措置を講ずることが望ましい。

注)試験方法は、JIS A 1145骨材のアルカリシリカ反応性試験方法(化学法)またはJIS A 5308(レディーミクストコンクリート)の付属書7「骨材のアルカリシリカ反応性試験方法(化学法)」、JIS A 1146骨材のアルカリシリカ反応性試験方法(モルタルバー法)またはJIS A 5308(レディーミクストコンクリート)の付属書8「骨材のアルカリシリカ反応性試験方法(モルタルバー法)」による。

アルカリ骨材反応抑制対策(土木構造物)実施要領

アルカリ骨材反応抑制対策について、一般的な材料の組み合わせのコンクリートを用いる際の実施要領を示す。特殊な材料を用いたコンクリートや特殊な配合のコンクリートについては別途検討を行う。

1. 現場における対処の方法

- a. 現場でコンクリートを製造して使用する場合 現地における骨材事情、セメントの選択の余地等を考慮し、2.1~ 2.3のうちどの対策を用いるかを決めてからコンクリートを製造する。
- b. レディーミクストコンクリートを購入して使用する場合 レディーミクストコンクリート生産者と協議して2.1~2.3のうちど の対策によるものを納入するかを決めそれを指定する。 なお、2.1、2.2を優先する。
- c. コンクリート工場製品を使用する場合 プレキャスト製品を使用する場合製造業者に2.1~2.3のうちどの対 策によっているのかを報告させ適しているものを使用する。

2. 検査・確認の方法

2.1 コンクリート中のアルカリ総量の抑制

試験成績表に示されたセメントの全アルカリ量の最大値のうち直近 $6 ext{ }$ 月の最大の値(Na_2O 換算値%) /100 imes単位セメント量(配合表に示された値kg/m³) +0.53 imes (骨材中のNaCl%) /100 imes (当該単位骨材量kg/m³) + 混和剤中のアルカリ量kg/m³が3.0kg/m³以下であることを計算で確かめるものとする。

防錆剤等使用量の多い混和剤を用いる場合には、上式を用いて計算すればよい。なお、AE剤、AE減水剤等のように、使用量の少ない混和剤を用いる場合には、簡易的にセメントのアルカリ量だけを考えて、セメントのアルカリ量×単位セメント量が2.5kg/m³以下であることを確かめればよいものとする。

2.2 抑制効果のある混合セメント等の使用

高炉セメントB種(スラグ混合比40%以上)またはC種、もしくはフライアッシュセメントB種(フライアッシュ混合比15%以上)またはC種であることを試験成績表で確認する。

また、混和材をポルトランドセメントに混入して対策をする場合には、試験等によって抑制効果を確認する。

2.3 安全と認められる骨材の使用

JIS A 1145骨材のアルカリシリカ反応性試験方法(化学法)またはJIS A 5308(レディーミクストコンクリート)の付属書 7 「骨材のアルカリシリカ反応性試験(化学法)」による骨材試験は、工事開始前、工事中 1 回/6ヶ月かつ産地がかわった場合に信頼できる試験機関(注)で行い、試験に用いる骨材の採取には請負者が立ち会うことを原則とする。また、JIS A 1146骨材のアルカリシリカ反応性試験方法(モルタルバー法)またはJIS A 5308(レディーミクストコンクリート)の付属書 8 「骨材のアルカリシリカ反応性試験(モルタルバー法)」による骨材試験の結果を用いる場合には、試験成績表により確認するとともに、信頼できる試験機関(注)において、JIS A 1804「コンクリート生産工程管理用試験方法―骨材のアルカリシリカ反応性試験方法(迅速法)」で骨材が無害であることを確認するものとする。この場合、試験に用いる骨材の採取には請負者が立ち会うことを原則とする。

なお、2次製品で既に製造されたものについては、請負者が立会い、製品 に使用された骨材を採取し、試験を行って確認するものとする。

フェロニッケルスラグ骨材、銅スラグ骨材等の人工骨材および石灰石については、試験成績表による確認を行えばよい。

- (注)公的機関またはこれに準ずる機関(大学、都道府県の試験機関、公益 法人である民間試験機関、その他信頼に値する民間試験機関、人工骨材 については製造工場の試験成績表でよい)
- 3. 外部からのアルカリの影響について
- 2.1および2.2の対策を用いる場合には、コンクリートのアルカリ量をそれ以上に増やさないことが望ましい。

そこで、下記のすべてに該当する構造物に限定して、塩害防止も兼ねて塗装等の塩分浸透を防ぐための措置を行うことが望ましい。

- 1) 既に塩害による被害を受けている地域で、アルカリ骨材反応を生じるお それのある骨材を用いる場合
- 2) 2.1、2.2の対策を用いたとしても、外部からのアルカリの影響を受け、被害を生じると考えられる場合
- 3) 橋桁等、被害をうけると重大な影響をうける場合

2 骨材のアルカリシリカ反応性試験(モルタルバー法)国土交通省法

1 適用範囲

本方法は、モルタルバーの長さ変化を測定することにより、骨材のアルカリシリカ反応性を判定する試験法(モルタルバー法)に適用する。

2 試験用器具

2.1 はかり

骨材のふるい分けに用いるはかりは骨材質量の0.1%以上の精度を有するものとする。モルタルを作る際での材料の計量には秤量2kg、感量0.1gのものとする。

2.2 型 枠

JIS R 5201 9.1.2 に規定される $40 \times 40 \times 160$ mmの3連型枠で、両端に長さ変化測定用のゲージプラグを埋め込めるよう、ゲージプラグ固定用の穴をあけたものとする。

2.3 長さ変化測定器具

長さ変化の測定は、JIS A 1129(モルタルおよびコンクリートの長さ変化 試験方法)に規定するダイヤルゲージ方法による。ダイヤルゲージは、JIS B 7509の0.001mm精度のものを使用するものとする。ゲージプラグは試験中にさびを生じない金属製のものとする。

2.4 モルタル製作用器具

モルタルの練り混ぜ、成形、締固めに使用する器具は、JIS R 5201 (セメントの物理試験方法) 9.1.1 および9.1.2 に規定される練り混ぜ機、モルタル供試体成形用型および突き棒に規定するものを使用する。

2.5 ふるい

砂の粒度調整用のふるいは、JIS Z 8801 (標準ふるい) に規定する呼び寸法4.75mm、2.36mm、1.18mm、600 μ m、300 μ m、150 μ mのものを用いる。

2.6 貯蔵容器

供試体を貯蔵する容器は、気密なフタにより密閉ができ、湿気の損失が無 い構造のものとする。

2.7 製砂機

粗骨材から細骨材を製造する製砂機はジョークラッシャー、ディスク型製砂機、ロール型製砂機等を用いる。

3 温度と湿度

3.1 成形室および測定室

モルタルの成形室および測定室は、20±3℃に保たなければならない。

3.2 貯蔵容器

貯蔵容器内の温度は40±2℃、相対湿度は95%以上保たなければならない。

4 材料

4.1 骨材の準備および粒度調整

対象とする骨材が粗骨材の場合には、あらかじめ洗浄した後、クラッシャー等で粉砕した細骨材とする。細骨材は、気乾状態(絶乾、表乾状態でもよい)で表-1に示す粒度に調整する。

ふるい	乎び寸法	質 量
通過	残 留	百分率(%)
4.75mm	2.36mm	10
2.36mm	1.18mm	25
1.18mm	600μ m	25
$600\mu\mathrm{m}$	300μ m	25
$300\mu\mathrm{m}$	150μ m	15

表-1 細骨材の粒度分布

4.2 セメント

セメントは、アルカリ量 $0.65\pm0.05\%$ 、 Na_2O (%): K_2O (%) = 1 : 2 ± 0.5の範囲にあるアルカリ量の明らかなポルトランドセメントを用いる。

4.3 水酸化ナトリウム

水酸化ナトリウムは、JIS K 8576に規定する特級試薬を水酸化ナトリウム 水溶液として用いる。また、市販されている1規定の水酸化ナトリウム水溶 液を用いてもよい。

4.4 水

練り混ぜに用いる水は、上水道以上の清浄のものを用いる。

5 供試体(モルタルバー)の作り方

5.1 供試体の数

1回の試験での供試体の数は3本を原則とする。また、1バッチから3本を製作する。

5.2 モルタルの配合

モルタルの配合は質量比でセメント1、水0.5、砂(表乾) 2.25とする。

1回に練り混ぜるセメント、砂、水の量は次を標準とする。

水÷NaOH水溶液 : 300ml セメント : 600g 砂 (表乾) : 1350g

NaOH水溶液の量はセメントのアルカリ量が Na_2Oeq で $1.2\pm0.05\%$ となるように計算して定める。

5.3 材料の計量

重量で計量する材料は、4ケタまで計る。砂が表乾状態でない場合は含水 (吸水)率を測定し、水の計量の際に補正を行い、水セメント比が変化しな いようにする。

5.4 練り混ぜ方法

モルタルの練り混ぜは、原則として次に示す方法による。

JIS R 5201 9.1.1で規定される練り混ぜ機を使用する。練りはちおよびパドルを混合位置に固定し規定量のセメント、砂を入れる。次に練り混ぜ機を始動させパドルを回転させながら30秒間混合する。次に練り混ぜ機を停止し、規定量の水を投入する。引きつづいて練り混ぜ機を30秒間始動させたのち20秒間休止する。休止のあいだにさじ練りはちおよびパドルに付着したモルタルをかき落す。更に練りはちの底のモルタルをかき上げるよう2ないし3回かき混ぜる。休止が終わったら再び始動させ、120秒間練り混ぜる。

5.5 成形

モルタルは直ちに型枠に2層に詰める。モルタルを型枠の高さの1/2まで詰め、突き棒を用いてその先端が5mm入る程度に、全面にわたって1層につき約15回突く。また、特にゲージプラグの周囲は十分にモルタルがいきわたるようにする。次にモルタルを型枠の上端まで詰め、前と同様に突き棒を用いて突き、最後に残りのモルタルをもって約5mm盛り上げを行なう。打設後は湿気箱に入れ乾燥を極力減ずるようにモルタル表面にふれないようにぬれ布等でおおう。余盛部は打設後約5時間程度で供試体をいためないように注意して削りとり、上面を平滑にする。

6 初期養生

打設後24時間 ± 2 時間までは型枠ごと湿気箱に入れて乾燥を極力減ずるように、モルタル表面にふれないようにぬれ布等でおおう。

7 脱型

初期養生完了後、脱型を行なう。このとき湿気を失わないように番号および 測定時の上下、測定時の方向を示す記号を明記する。打設から脱型までの時間 は24 ± 2 時間となるようにする。

8 基長のとり方

脱型直後、番号を付けた後供試体が極力乾燥しないように直ちに基長を測定する。

9 貯蔵および測定

供試体は密封した容器に温度40±2℃、湿度95%以上で貯蔵する。

湿度95%以上確保するための手段として、供試体の表面を吸取紙でおおうのが望ましい。吸取紙には流れない程度の水分が常に保たれていなければならない。吸取紙でおおう場合には容器はビニール袋でもよい。

供試体の表面を吸取紙でおおわない場合には、容器底面に温度調節をした水 をはり、その上に供試体を直接水が接しないように1本1本立てて配置しなけ ればならない。

供試体が所定の材令に達したならば供試体を容器ごと少なくとも16時間、20 ±3℃に保ったのち容器を開いてその材令の測定を行う。測定の間は極力、供 試体が乾燥しないようにする。

測定後は直ちに40°C ± 2°C、 $RH \ge 95$ %にもどす。

最初の24±2時間の長さの測定の後に1つの容器に入れる全ての供試体は、 すべて同時に測定がくるように同じ日につくり、同時に容器に入れる。

供試体は測定後、前の期間とは上下逆の位置にして容器の中に置き直す。

10 測定方法

10. 1 長さ変化の測定

測定はJIS A 1129ダイヤルゲージ法による。

測長わくは、供試体を測定する時と同じ状態に置く。

標準尺の一方のプラグの測長わくの接点を接触させ、ダイヤルゲージの 先端が標準尺の軸に一致して動くようにし、スピンドルを徐々に出して、標 準尺のもう一方のプラグに接触させダイヤルゲージの目盛を読む。目盛は 1/1000mmまで読む。スピンドルを引き、再び上記の操作を繰り返し、数値 がおちついた後の目盛の読みから平均値を求め、sXiとする。

供試体について、上記の作業を行いXiを求める。

供試体は常に同じ端を上にし同じ面を手前にする。ゲージと供試体の位置 関係が常に同一となるようにする。

測定器、標準尺、供試体は、測定前3時間、その試験毎に定めた温度に保つ。

10. 2 外観観察

長さ変化の測定時に供試体のそりやポップアウト等の変状、表面のひびわ

れや水ガラスのゲル等の浸出物、よごれ等を観察する。

11 長さ変化率の算出

供試体の最初の長さと、測定の各材令における長さとの差を有効ゲージ長さで除し0.001%まで計算し、この期間における供試体の長さ変化率として記録する。

長さ変化率は次の式で求める。

長さ変化率(%)=
$$\frac{(Xi-sXi)-(Xini-sXini)}{I}$$
×100

ここに Xi: 材令iにおける供試体のダイヤルゲージの読み

sXi: 材令iにおける標準尺のダイヤルゲージの読み

Xini: 供試体脱型時のダイヤルゲージの読み

sXini:同時に測定した標準尺のダイヤルゲージの読み

L: 有効ゲージ長 (ゲージプラグ内側端面間の距離)

注)Xi、sXi、Xini、sXini、Lの単位は同一とする。

有効ゲージ長はゲージプラグによって長さが異なるので注意を要する。

12 測定材令

測定の材令は次のとおりとする。

脱型時 2 週

4週 8 週

3 ケ月 6 ケ月

13 判 定

判定については、3本の平均値が、6ヶ月に0.100%以上の膨脹を生じた骨材は有害であるとする。なお、3ヶ月で0.050%以上の膨脹を生じたものを有害としてもよいが、3ヶ月で0.050%未満のものは6ヶ月まで試験を続けた後に判定しなければならない。

14 精 度

同一バッチから成形した全部の供試体の平均膨脹量と、個々の供試体の膨脹量との絶対値の差が0.010%以下であれば、精度は満たされていると考えてよい。

但し、平均膨脹量が0.050%を超える場合は、個々の供試体の膨脹量が平均膨脹量と±20%以上の相対差がなければ精度は満たされていると考えてよい。また個々の供試体の膨脹量がすべて0.100%以上の膨脹を示したものは精度に関係なく有害と判定してよい。なお、精度が上記のいずれにも適合しないときは、最も膨脹量の小さい供試体1本を除いた、残りの2本の供試体の平均膨脹量で判定してもよい。

15 報 告

報告は次の項目を記載する。

- (1) 骨材の産地、種別および粒度などの特記事項
- (2) セメントの種類および銘柄
- (3) セメントのアルカリ量、酸化カリウム (K_2O) 、酸化ナトリウム (Na_2O) および酸化ナトリウム等量 (Na_2Oeq) 等の数値
- (4) 供試体の平均長さ変化の百分率、各測定時材令
- (5) 試験に混和材料を用いた場合には、その種類、使用量、化学分析結果等
- (6) その他試験中および試験後の供試体検査によって発見された重要な事項 等の必要事項

3 骨材のアルカリシリカ反応性試験(化学法)国土 交通省法

1 総則

1.1 一般

本試験方法は、未使用骨材およびフレッシュコンクリート中の骨材について、化学的な方法により、骨材のアルカリシリカ反応性を比較的迅速に判定する方法である。

1.2 適用範囲

本規定は、試験溶液中のアルカリ濃度減少量(Rc)および溶解シリカ量(Sc)を測定し、判定式から骨材のアルカリシリカ反応性を判定する試験方法(化学法)に適用する。

1.3 用語

- (1) アルカリシリカ反応 (ASR): 骨材中の反応性を有するシリカとコンクリートに含まれるアルカリが反応することにより生じた生成物が吸水して膨脹し、コンクリートにひびわれ等を生じさせる現象
- (2) アルカリ濃度減少量 (Rc): 骨材との反応によって消費されたアルカリの量
- (3) 溶解シリカ量 (Sc): 骨材とアルカリの反応によって溶出したシリカの量

1.4 関連規格

本試験方法に記述されていない事項は下記の関連規格によるものとする。

IIS A 1102 骨材ふるい分析試験方法

JIS A 5004 コンクリート用砕砂

JIS A 5005 コンクリート用砕石

IIS B 7413 浸没線付ガラス製水銀棒状温度計

JIS K 0050 化学分析方法通則

JIS K 0115 吸光光度分析のための通則

IIS K 0121 原子吸光分析のための通則

JIS K 8001 試薬試験方法通則

JIS K 8005 容量分析用標準試薬

JIS R 3503 化学分析用ガラス器具

JIS Z 8401 数値の丸め方

JIS Z 8801 標準ふるい

2 試料採取

2.1 試料採取

試料は約40kgを採取する。レデーミクストコンクリート工場において試料採取を行う場合は、粗骨材、細骨材のそれぞれについて約40kgを採取する。

3 使用装置・器具および試薬

- 3.1 試料調整用装置および器具
 - (1) 粉砕装置 粗骨材を約5mm以下の粒度に粉砕することができる ジョークラッシャー
 - (2) 微粉砕装置 5 mm以下の骨材を300 μ m以下の粒度に粉砕することができる円盤型粉砕機又はその他適当な装置。
 - (3) ふるい JIS Z 8801に規定された300 μ mおよび150 μ mの網ふるい。
 - (4) 乾燥器 105℃に調節し、長時間連続使用し得る乾燥器。
- 3.2 アルカリシリカ反応性試験用装置および器具
 - (1) 化学はかり ひょう量150g程度で感量10mgのもの、およびひょう量 80g程度で感量0.1mgのもの。
 - (2) 反応容器 ステンレス鋼又は適当な耐食性材料で製作された容量 $50 \sim 60$ mlの容器。気密にふたをすることができるもので、空試験時にシリカの溶出がなく、アルカリ濃度減少量 10mmol/ ℓ 未満のもの。
 - (3) 恒温水槽 反応容器全体を沈めて静置させた状態で、80±1.0℃に24 時間以上保持することができるもの。
 - (4) 水浴
 - (5) 砂浴
 - (6) 光電分光光度計又は光電光度計測定波長410nm付近における透過光量を十分な精度で測定できる装置。
 - (7) 原子吸光光度計 高温バーナーを有し、アセチレン・酸化二窒素ガスによる測定が出来る装置。
 - (8) 電気炉 最高温度1100℃を長時間保持することができるもの。
 - (9) 分析用器具類
 - (a) ホールピペット (5 ml、10ml、20ml、25ml)
 - (b) ブフナー漏斗 (内径約80mm)
 - (c) ビュレット (25ml)
 - (d) メスフラスコ (100ml、1ℓ)
 - (e) 三角フラスコ (100ml)

- (f) ビーカー (100ml、200ml)
- (g) 時計皿
- (h) 共栓付ポリエチレン製容器 (30~50ml)
- (i) ポリエチレン瓶 (100ml、1ℓ)
- (j) テフロンシリンダー又はポリエチレンシリンダー (10ml)
- (k) 白金皿 (75ml又は100ml)
- (1) 白金るつぼ (30ml)
- (m) デシケーター
- (n) 吸引ろ渦装置
- (o) 駒込ピペット
- 3.3 水および試薬
 - 3.3.1 水

蒸留水又は同程度以上の純度を有する水を用いる。

3.3.2 試薬

試薬は、JIS規格の試薬特級又はそれと同等以上のものを使用する。

- (1) 1 N水酸化ナトリウム標準液1.000±0.010規定で、±0.001規定まで 標定したもの
- (2) 0.05N塩酸標準液0.05規定で、±0.001規定まで標定したもの
- (3) 過塩素酸 (60または70%)
- (4) 塩酸(1-1)
- (5) ふっ化水素酸(約47%)
- (6) 硫酸(1+1)
- (7) 硫酸(1+10)
- (8) フェノールフタレイン指示薬(1%エタノール溶液) フェノール フタレイン 1 gをエタノール(1+1) 100mlに溶解し、滴瓶に入れ て保存する。
- (9) モリブデン酸アンモニウム溶液(10W/V%) モリブデン酸アンモニウム〔 $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$ 〕10gを水に溶かして100mlとする。溶液が透明でない場合はろ紙(5種C)を用いてろ過する。この溶液はポリエチレン瓶に保存する。白色沈殿が生じたら新たに作り直す。
- (10) しゅう酸溶液 (10W/V%) しゅう酸 2 水和物10gを水に溶かして 100mlとする。この溶液はポリエチレン瓶に保存する。
- (11) シリカ標準原液 (10mmol SiO₂/ℓ) 二酸化けい素 (純度99.9%以上)を磁器るつぼに入れて、1000℃で約1時間強熱後、デシケーター中で放冷する。冷却した二酸化けい素0.601gを白金るつぼ (30ml) に

はかり取り、炭酸ナトリウム(無水)を3.0g 加えてよく混合する。 徐熱してから1000℃の電気炉に入れて二酸化けい素を融解する。冷却 後、温水100mlを入れたビーカー(200ml)に入れ融成物をよく溶か す。白金るつぼはよく洗浄して二酸化けい素を取り出す。溶液は1ℓ のメスフラスコに移し、水を加えて定容とした後ポリエチレン瓶に入 れて保存する。この標準液は検量線作成のたびに調整する。

4 試料の調整

4.1 試料の縮分

採取した骨材をよく混合し、約10kgの代表骨材を採る。

4.2 粗粉砕

代表骨材を粉砕装置で約5mm以下に粗粉砕する。これをよく混合した後、 縮分して約1kgの代表試料を採る。

- 4.3 代表試料の調整
 - (1) 代表試料から $300 \sim 150 \,\mu$ mの粒群をふるい分ける。 $150 \,\mu$ m以下の微粉は廃棄する。
 - (2) 300μ m以上の粗粒部分は、微粉砕装置で、少量ずつ粉砕する。この時、 150μ m以下の微粉部分の割合をできるだけ少なくなるように十分に注意する。
 - (3) 粉砕した代表試料は、 $300\sim150\,\mu$ m粒群にふるい分け、 $150\,\mu$ m以下の微粉は廃棄する。 $300\,\mu$ m以上の粗粒部分は、4.3(2)、(3)の操作を繰り返して、 $300\sim150\,\mu$ mの粒群を集める。
 - (4) 300μ m以上の粗粒部分がなくなったら、 $300 \sim 150 \mu$ mの粒群を混合し、 150μ mふるいを用いて少量ずつ流水下で水洗する。水洗により微粉を除去した試料は、約1 ℓ の蒸留水を用いてすすぎ洗いを行う。
 - (5) 水洗試料は、ステンレス鋼製バット等の適当な容器に移し、余分の水 を除去した後、105 ± 5 ℃ に調節した乾燥器で20 ± 4 時間乾燥する。
 - (6) 冷却後、再び 150μ mふるいにより微粉部分を除去し、 $300 \sim 150 \mu$ m の が 群をよく混合して 試験 用 試料 とする。

5 アルカリシリカ反応性試験

- 5.1 アルカリと骨材の反応操作
 - 5.1.1 要旨

試料に1N水酸化ナトリウム標準液を加え、80℃に調節した恒温水槽で24時間反応させる。

これを吸引ろ過して試料原液を得る。なお、ろ過操作は反応容器1個ず つ順次行った方が誤差は小さくなる。

5.1.2 操作

- (1) 1試料につき25.00±0.05gずつを3個はかり取り、それぞれ3個の 反応容器に入れる。次いで1N水酸化ナトリウム標準液25mlをホール ピペットを用いて加え、直ちにふたをする。なお、空試験用反応容器 1個も同様に操作する。
- (2) 反応容器は実験台上で交互に3回ゆっくり水平に回し、試料に付着した気泡を分離する。
- (3) 反応容器のふたをよく締め、直ちに80±1℃の恒温水槽に完全に沈めて24時間±15分間そのまま静置する。
- (4) 所定時間に達したら、恒温水槽中から反応容器を取り出し、流水で 15±2分間冷却する。
- (5) 密閉したままの容器を上下に2回転倒させ、5分間静置した後ふたを開ける。ブフナー漏斗にろ紙(5種B5.5cm)を置き先ず上澄液を静かに吸引ろ過する。次いで容器中の残分はステンレス製スプンなどでブフナー漏斗に移し入れ、残分を軽く押して平らにし4分間吸引を続ける。ろ液は80~50mlの共栓付ポリエチレン製容器に受ける。この時の吸引ろ過時間はすべて一定にする。
- (6) ろ液の入ったポリエチレン製容器を密栓し、混合した後試料原液とする。

5.2 アルカリ濃度減少量の定量方法

5.2.1 要旨

試料原液を分取し、水を加えて希釈試料溶液とする。この一部を分取し、フェノールフタレイン指示薬を用いて0.05N塩酸標準液で滴定する。

5.2.2 操作

- (1) 5.1.2(6)の試料原液5mlをホールピペットで分取し、直ちに 100mlのメスフラスコに移して水で定容とする。よく混合した後、こ の希釈溶液20mlをホールピペットで分取し、三角フラスコ (100ml) に移す。
- (2) フェノールフタレイン指示薬 $(1\% x 9 / 1 1 \pi)$ $(1\% x 9 / 1 \pi)$ (1%
- (3) 次に、希釈試料溶液20mlを再び分取し、1回目に滴定値を参考値として、慎重に滴定を行い、ここで得た値を正式滴定値とする。

5.2.3 計 算

アルカリ濃度減少量は、次式により算出する。

$$Rc = \frac{20 \times 0.05 \times F}{V_{1}} (V_{3} - V_{2}) \times 1000$$

ここに、 $Rc = アルカリ濃度減少量 (mmol/\ell)$

V₁ = 5.2.2(1)で希釈試料溶液からの分取量 (ml)

V₂= 希釈試料溶液の滴定に要した0.05N塩酸標準液量 (ml)

V₃= 希釈した空試験溶液の滴定に要した0.05N塩酸標準液量 (ml)

F=0.05N塩酸標準液のファクター

5.3 溶解シリカ量の定量方法

溶解シリカの定量は、次の3方法がある。

- (1) 重量法
- (2) 原子吸光光度法
- (3) 吸光光度法
- 5.3.1 重量法
 - 5.3.1.1 要旨

試料原液を分取し、塩酸を加えて蒸発乾固した後、過塩素酸処理を行う。沈殿物は強熱後、ふっ化水素酸処理をする。

- 5.3.1.2 操作
 - (1) 5.1.2(6)の試料原液 5 mlをホールピペットで分取し、白金皿 (75ml) 又はビーカー (100ml) に移す。
 - (2) 塩酸(1+1)5mlを加えて混合し、ドラフト内の水浴上で蒸発 乾固する。
 - (3) 乾固したら過塩素酸(60または70%) 8 mlを加え、砂浴上で加熱し、内容物がはね飛ばないように注意して蒸発させ、過塩素酸の濃い白煙が出始めたら、時計皿でふたをし、容器の底を少し砂の中に埋えるようにして10分間加熱を続ける。
 - (4) 白金皿又はビーカーを砂浴から降ろして放冷した後、時計皿に付いた内容物を水洗して回収し、塩酸(1+1)5mlおよび温水約20mlを加えてガラス棒でかき混ぜ、ゼリー状の塊をよくつぶしてから、ろ紙(5種B、11.0cm)でろ過し、温水で10回洗浄する。
 - (5) 沈殿を白金るつぼ (30ml) に入れ、ろ紙上に硫酸 (1+10) 2、3滴を滴加してから乾燥し、炎を出さないように徐々に加熱してろ紙を炭化した後、さらに灰化する。次いで、 1000 ± 50 に調節した電気炉で1時間強熱し、デシケーター中で放冷した後、質量をはかる。
 - (6) 白金るつぼ内を少量の水で湿し、硫酸 (1+1) 2、3滴および

ふっ化水素酸 (約47%) 10mlを加える。これをドラフト内の砂浴上で静かに加熱する。次いで、徐々に加熱して 1000 ± 50 ℃で5分間強熱し、デシケーター中で放冷した後質量をはかる。

5.3.1.3 計算

溶解シリカ量は次式により算出する。

 $Sc = 3330 \times W$

ここに、Sc=溶解二酸化けい素 (mmol/ℓ)

W=空試験による補正を行った試料原液 5 ml中の二酸化けい素の 質量(g)

- 5.3.2 原子吸光光度法
 - 5.3.2.1 要旨

希釈試料溶液をアセチレン・酸化二窒素の高温フレーム中に噴霧させ、251.6nmにおける吸光度を測定してシリカ量を定量する。

- 5.3.2.2 標準液の作成
 - (1) 3.3.2(II)のシリカ標準原液(SiO₂ 10mmol/ ℓ)から0、10、20、30、40mlを正しく分取して100mlのメスフラスコに入れ、それぞれ水を標線まで加えて振り混ぜ、ポリエチレン製容器に移す。(SiOzとして0、1.0、2.0、3.0、4.0mmol/ ℓ)
 - (2) 市販のシリカ標準液 (Si 1000ppm) を用いる場合は、シリカ標準液を 0、1.0、2.0、4.0、6.0、8.0、10.0mlを正しく分取して100mlのメスフラスコに入れそれぞれ水を標線まで加えて振り混ぜ、ポリエチレン製容器に移す。(Siとして 0、10、20、40、60、80、100mg/ℓ)
- 5.3.2.3 検量線の作成
 - (1) 原子吸光光度計のけい素用中空陰極ランプを点灯し、輝度を安定させるための最適条件に設定する。アセチレン・空気を用いてバーナーに点火した後、アセチレン酸化二窒素の高温フレームに切り換える。
 - (2) 最も高濃度のシリカ標準液を噴霧させ、アセチレン・酸化二窒素の流量比、バーナーヘッドの位置等の最適条件を設定する。
 - (3) 続いて各標準液の吸光度を測定し、シリカ濃度との関係線を作成して検量線とする。
- 5.3.2.4 操作
- 5.2.2(1)で調製した希釈試料溶液の吸光度を検量線作成と同じ条件で測定する。

試料溶液の吸光度が、最も高濃度のシリカ標準液の吸光度を超えるときは、希釈試料溶液をさらに適宜正確に希釈(希釈率n)して測定する。

5.3.2.5

溶液シリカ量は、シリカ標準原液(SiO_2 10mmol/ ℓ)を用いた場合は(1)式より市販のシリカ標準液(Si 1000ppm)を用いた場合は(2)式により計算する。

$$Sc = 20 \times n \times C \quad \cdots \qquad (1)$$

$$Sc = 20 \times n \times A \times \frac{1}{28.09} \quad \cdots \qquad (2)$$

ここに、 $Sc = 溶解シリカ量 (mmol/\ell)$

n=希釈倍率

C =検量線から求めたシリカ量(SiO₂ mmol/ ℓ)

 $A = 検量線から求めたシリカ量 (Si mg/\ell)$

5.3.3 吸光光度法

5.3.3.1 要旨

希釈した試料溶液中のシリカとモリブデン酸アンモニウムとを反応させた後、しゅう酸を加える。これを410nm付近で吸光度を測定してシリカ量を定量する。

5.3.3.2 検量線の作成

- (1) 3.3.2(II)のシリカ標準原液(SiO₂ 10mmol/ ℓ)から0、1.0、2.0、3.0、4.0mlを正しく分取して100mlのメスフラスコに入れ、それぞれ約50mlとなるように水を加える。(SiO₂として0、0.1、0.2、0.3、0.4mmol/ ℓ)
- (2) モリブデン酸アンモニウム (10%) 2 mlおよび塩酸 (1+1) 1 mlを加えて振り混ぜる。15分間静置した後、しゅう酸溶液 (10%) 1.5mlを正しく加え、水を標線まで加え振り混ぜる。
- (3) 市販のシリカ標準液 (Si 1000ppm) を用いる場合は、シリカ標準液10mlを正しくはかり取って100mlのメスフラスコに入れ、水を標線まで加えて振り混ぜる。この溶液から、0、2.0、4.0、6.0、10.0mlを正しく分取して100mlのメスフラスコに入れ、それぞれ約50mlとなるように水を加える。(Siとして、0、2.0、4.0、6.0、10.0mg/ ℓ)
- (4) 以下、5.3.3.2(2)と同様に操作する。
- (5) 各標準液は5分±10秒間静置し、水を対照液として、410nm付近

の波長で吸光度を測定し、シリカ濃度との関係より検量線を作成する。

5.3.3.3 操作

- (1) 5.2.2(1)で調製した希釈試料溶液10mlをホールピペットで分取して100mlのメスフラスコに移す。
- (2) 約50mlとなるように水を加えた後、5.3.3.2(2)と同様に操作する。
- (3) 5分間±10秒間静置した後、検量線作成時と同じ条件で吸光度を 測定する。吸光度が0.1~0.6の範囲を外れた場合には、試料溶液の 濃度を適宜調整した上で改めて測定を行う。

5.3.3.4 計 算

溶解シリカ量は、シリカ標準原液(SiO_2 $10mmol/\ell$)を用いた場合は(1)式より、市販のシリカ標準液(Si 1000ppm)を用いた場合は(2)式により計算する。

$$Sc = 20 \times n \times C \qquad (1)$$

$$Sc = 20 \times n \times A \times \frac{1}{28.09} \qquad (2)$$

ここに、 $Sc = 溶解シリカ量 (mmol/\ell)$

n=希釈倍率

 $C = 検量線から求めたシリカ量 (SiO_2 mmol/ \ell)$

A=検量線から求めたシリカ量 (Si mg/ ℓ)

6 試験結果のまとめ

6.1 試験結果の表示

各測定値はmmol/ ℓ 単位で表わし、整数に丸める。

6.2 許容精度

アルカリ温度減少量及び溶解シリカ量のそれぞれ3個の測定値は、いずれもその平均値との差が10%以内でなければならない。ただし、Rc、Sc共100mmol/ℓ以下の場合には、平均値との差が10mmol/ℓ以内であればよい。 試験結果が上記の範囲をこえるときは、再試験を行う。

7 骨材のアルカリシリカ反応性の判定

7.1 骨材のアルカリシリカ反応性の判定

骨材のアルカリ反応性の判定は、 $Sc \ge 10 \text{mmol}/\ell$ かつ $Rc < 700 \text{mmol}/\ell$ のとき $Rc \le Sc$ を有害とし、それ以外は無害とする。

定表
無
少
葡
ē
#
_
I
\supset
1
7

場員 麵 現監

対 淵 住員 Ř 出題

硘
6
毌
_
I
\supset
7
\mathcal{N}
П

別様式

工事名

請負者名						
測定者氏名		中中	測定者氏名		週 第 定 値	中中
立会者氏名 (監) (講)	- 一 (%)	(kg/m³)	立会者氏名	(議) (講)	- 学 (%)	(kg/m³)
測定年月日 ・・・ 時刻 :	か、人は近偏)	測定年月日	時刻	か、人は近側)
工			L		1	
コンクリートの	2		コンクリートの		2	
種類	cc		種類		63	
コンクリートの観音会社を対象	111111		コンクリートの制造会社を		1 fina	
※ 高々日七	1		ない。		E	
記和剤の種類 m³当り 使用量	十夕値		混和剤の種類	m ³ 当り 使用量	十型値	
セメントの種類			セメントの種類			
単位水量 kg/m³			単位水量	kg/m ³		
測定器名			测定器名			
備考:測定結果に対する処置を講じた事項等を記入する。	事項等を記入する。		備考:測定結	備考:測定結果に対する処置を講じた事項等を記入する。	事項等を記入する。	

注) 塩分濃度を (%) で測定した場合は、次式で塩分量を求める。 塩分量 (kg/m³) = 単位水量 (kg/m³) ×測定値÷100